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a 

I 
C 

c 

D 

Dl + iD2 

e(e) 

F 

f(k,a,2) 

ffW 
9'(k) 

Him) 

«1 

H2 

h 

I(t,,Vl) 

sinh A'a cos A'a 

cosh Ka sin A'o 

cosh A'a cos Ka 

sinh A'a sin A'a 

Height of hydrofoil above sea bed 

Semispan of hydrofoil 

Average lift coefficient of hydrofoil * 

(NlDl + N2D2)/{D^D^)    • 

(*s0t •*10a)/(D1**0£)   * 
Chord of hydrofoil 

Subscript to designate line doublet 

Complex denominator of M2(to1 IJ)   • 

Functions of 0 occurring in K (if)   • 

Froude number based on water depth 

Functions of fc, a, and 3 occurring in Ä'(rj) 

Undetermined parameter 

Acceleration of gravity 

sinh kh cosh kh 

kh cosh2 kh 

Undetermined parameter 

sinh 2Kh cos 2Kh 

cosh 2Kh sin 2/ih 

cosh 2 A'Ä cos 2 Kh 

sinh 2Ä'A sin 2Kh 

Average water depth 

Imaginary part of kernel function K{ri)   • 

Real part of kernel function K (q)   * 

* Primed quantities «re used for the supercritical range of Fronde number and unprimed 
subcritical ranee. 

quantities for the 
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Integration variable 

Kernel of an integral defining a potential function    * 

Integration variable 

Pole on the real A-axis 

Kernel of an integral defining ä potential function    • 

Coipplex kernel function 

Integration variable 

Complex terms in the numerator of /l/2(«;,ö) 

Pressure change in the fluid 

Unity if F < 1 and (- 1)" if F > 1 

x2 + Sj 

x2 + S2 

T 

{V - y)2 + (2nA + 2 - o)2 

(V - y)2 + (2nA + a + a)2 

Kernel of an'integral defining a potential function 

Free-stream velocity 

Subscript to designate semi-infinite vortex sheet 

Either w, or w_ 

x cos 0 + (17-y) sin 6 

x cos 0 - {r^-y) sin 0 

Longitudinal coordinate 

Horizontal lateral coordinate 

sinh Ke cos Kz 

cosh Kz sin Kz 

cosh Kz cos Kz 

sinh Kz sin Kz 

Vertical coordinate 

Spanwise distribution of vorticity   „ 

Wave elevation . 

Distance measured along the span 
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Angle 

. coa-1(l/F) 

Shape parameter 

Horizontal doublet distribution dlong the span 

Distance in the x-direction 

Density of fluid 

Total potential function m 

Perturbation potential function   * 



ABSTRACT 
« 

This report shows that singularities for a semi-infinite vortex sheet Md 

a horizontal line doublet, both of finite span, may be used to represent the vor- 

ticity and displacement produced by a finite sfmn hydrofoil.   The boundary con- 

ditions which must be satisfied when these singularities move in shallow water 

are derived.   Expressions for tlfe potential functions are obtained for both the 

subcritical and supercritical ranges of Froude^iumber.   Explicit expressions for. 
the x-, y-, and z-derivatives of the potential functions are also presented.   Meth- 

ods for determining the strengths of the singularities are discussed. 

INTRODUCTION 

As an extension of Wu's theoretical study of finite span hydrofoils moving beneath the 

surface in water of infinite depth,    expressions are derived here for the potential functions 

associated with finite span hydrofoils in water of finite depth.   These expressions may be 

obtained for any span, water depth, or depth of submergence, and for any velocity in the sub- 

critical and supercritical ranges of Froude number.   In additioti to the potential functions, 

explicit expressions are derived for the x-, y-, and 3-derivatives of these functions.   With 

the results of Wu's report and those of othrer investigators,2,3 these functions may be used 

to determine wave profiles, wave resistance, velocity components, pressure, and other pa- 

rameters. # 

A few theoretical studies have been made of the wavemaking produced by singular- 

ities moving beneath a free surface in shallow water.   Lunde4 outlined the method for find- 

ing the wavemaking of a source in shallow water,   .nd Pond5 and DiDonato6 have made a 

complete analysis of the problem for t .e subcritical range of Froude number.   A further dis- 

cussion of problems of this type, including a finite span hydrofoil, is given in Reference 7. 

None of these works gives a complete analysis for the supercritical range of Froude number. 

When a singularity moves horizontally between a rigid bottom and a free surface, the 

potential function is very sensitive to the value of the Froude number based on water depth. 

As the velocity increases, the wavemaking builds up and becomes very severe when the 

Froude number approaches unity.   When the Froude number exceeds unity the singularity is 

moving faster than the wave velocity and wavemaking effects diminish.   This phenomenon is 

common where ships enter shallow water and the resistance suddenly decreases when the 

velocity exceeds the critical speed.   Although most surface ships seldom exceed critical 

speed in normal operation, this range may be important in the operation of hydrofoil boats. 

Wu has shown that the singularity which produces the same vorticity as a hydrofoil 

is a semi-infinite vortex sheet of finite span, extending from the position of the hydrofoil 

References are listed on page 29. 



to an infinite distance downstream.   In addition to the vorticity, the hydrofoil produces a dis-0 

placement effect.   At some distance from the hydrofoil, a-horizontal line doublet of finite span, 
whose strength is proportional to the water displaced, is adequate to represent the displace« 

ment effect.   In shallow water both singularities must satisfy boundary conditions at the sea 

bed and at the free surface.   Furthermore,^ water surface far ahead of the hydrofoil is not 
disturbed.   In this report expressions are derived for the potential functions of each of the 

singularities.   Because the boundary conditions and methods of analysis are the same for 

each casd, general considerations will be discussed first.   Finally, a method for determining    « 
the strengths of the Angularities will be discussed. 

BOUNDARY CONDITIONS FOR THE THEORETICAL ANALYSIS 
• 

The hydrofoil may be considered fixed in an inertial system in which there is a uniform 
velocity (/ at ar = - «. flowing in the positive avdirection.   As shown in Figure 1, the hydro- 

foil with chord c and semispan b is fixed at a: = 0, z = a with its span extending from y = - 6 

to y - 6.   The origin of the coordinate system is at the sea bed and the plane a = A is the un- 
disturbed water surface. - * 

f-c^ 

Hi.-. '..'.Tlfszy**!*! 

Figure 1 - Coordinate System for a Hydrofoil in Shallow Water' 

The potential flow about a hydrofoil may be obtained by representing the hydrofoil by 
several singularities extending along the span.   The steady-state potential function is 



Q {x, y, z) = U x + $ (a;,*y, 2) [1] 

where tf> is the perturbation potential.   If disturbances in the flow are small, interaction terms 

may be neglected, and <f> is the sum of the potential functions for each of the singularities 

used jto represent the hydrofoil.   The change in pressure p produced at any point in the fluid 

is obtainecFfrom Bernoulli's equation.   Along any streamline 

<?</> 1 
j> (x, y, z) = -p U pg(z-h)-    - p (grad ^i)2 

dx .  2 
[2] 

where p is the density of the fluid, 

g is the acceleration of gravity, and 

2 is the position of the streamline in the undisturbed flow. 

In the linearized theory, the last term in the Equation [2] may be neglected.   Along the stream- 

jjne represented by the free surface, the pressure change produced is zero and the wave el- 

evation is given by 

U  I d<f>\ 
C(«,y)-»-A-- - {^\ [3] 

If the sea bed is considered as a rigid surface, there is no flow normal to this surface 

and the first boundary condition is 

boundary Condition I [4] 

For disturbances at the free surface which are small compared with the wave length, the 

normal velocity of the surface is the same as the vertical velocity of the fluid particles. 

Then • 

\      dx        dz   I 
= 0 [5]       » 

z = A 

If Equations [3] and [5] are combined, the second boundary condition which applies at the 

free surface is obtained: * 

rjoundary Condition II i   ~ + F2h  —- 
dz dx2   / 2 = A 

= 0 [6] 

where F is the Froude number based on water depth 

Ü 
F 

\/gh 
[7] 



As the free surface far ahead of the hydrofoil is undisturbed, the wave elevation and hence 

the potential itself must vanish far upstream.   Therefore the third boundary condition is» 

Boundary Condition III for a;-»-«., ^ = 0 [8] 

In addition, the potential and its derivatives are finite everywhere in the region except at the 
position of the singularity. 

If the hydrofoil is represented as a lifting line with finite displacement and its vortex 

wake, two singularities are required to represent the foil in an unbounded fluid.   The circu- 

lation and trailing vortex sheet are represented by a semi-infinite vortex sheet of finite span 

The displacement of the foil is represented by a horizontal line doublet.   As the problem is  ' 

l.near, the total potential is the sum of the potentials for the two singularities.   Both poten- 

tials must satisfy the three boundary conditions independently.   The solution for each poten- 

tial .s built up from the potential of that singularity in an unbounded fluid.   The function 6 

is the potential of the singularity in an unbounded fluid plus itl image in the sea bed such ' 

that Boundary Conditions I and III are satisfied.   The function ^ is determined in such a 
way that the potential 0, + ^ satisfies Boundary Condition „ as wen as ,_   The ^^ 

*, + *„ is found to consist essentially of the sum of three terms which will be designated 

as 0     ^     and ^   In the subcritical range of Froude number, ^ is the total potential for    * 

zero Froude number, 02 ls a short-range potential which decays rapidly to zero a short dfs- 

tance   rom the singularity, and ^ is the potential associated with wavemaking.   In the super- 

critical range of Froude number, *, is the total potential for infinite Froude number but the 

other terms have the same significance.   Boundary Condition III A needed to exclude wave- 

making far upstream from the hydrofoil and to determine the explicit form of ^ for positive 

•and negat.ve values of *   When all boundary conditions are satisfied, the total potential 
function is . 

<* *I + ^H = ^1  + <t>2 + 't>3 [9] 

POTENTIAL OF A SEMI-INFINITE VORTEX SHEET OF FINITE SPAN 

The potential of a semi-infinite vortex sheet at 3 = a and its image at 2 = - a is 
obtained from Wu's report1 

*     0L/      = 
z-a 

I An 

r rwdr,      r , -. 
-6 Of-y)' 

T (7) dr, 

i    (n-v)2 + (s-a)2    L [*2 + (f-y)2 + (2 + 0)2]wJ 
[10] 



where r(7;) is the distribution of circulation along the span. It is easy to see that <f>v van- 

ishes for ar = -oo and its 3-derivative vanis.hes at 3 = 0. This Equation also has an integral 

form which is derived in Appendix A and which is the real part of • 

*,,-«.. 
i  it        •; • 

-b 0 

« 

9/2 de      7 
+ ^L   (r..,     -f- -.   /«'^[sgBC*-«)«-*!»-«!-,-*<« + •)] d» 

in2   J.1   W) *?      J     t cos 0   J 

where 

w = x cos ß + (tf-y) sin 0 [12] 

[11] 

and sen is the signum function whose value is + 1 when the argument is positive, -1 when 

the argument is negative, and 0 when the argument is zero.   The line through the integral sign 

indicates th^t the principal value is to be taken.   In this case the integral must be evaluated 

from - IT/2 + <   to w/2 - t, where t  approaches zero in like manner at the two limits. 

To satisfy Boundary Condition II at the free surface, an undetermined potential function 

tVn wil1 be added to <t>y ■   This function will be given the same x and y dependence as <^ 

and must satisfy Boundary Condition I.    If $y    is written in terms of undetermined parameters 
H{m) and G{k,0), then the form for 2 > a is * 

b I       00 

tVj* *»-„-*«  ^ f r(l)<tl   <  fein^-y'>Sinhma[e-mz + H{m) cosh MB] dm 
-b     * [  0 

+ —    y    ^-^   Jeikw sinh ka [e-*2 + G (k,ft) cosh *»] rf/i;>-[13] 
-w/2 

The integrands of^each of these integrals must vanish when they are substituted into 
Equation [6], fhe expression for Boundary Condition II.   Then 

,—mh 
Him). 

G(k, 6) = 

sinh mh 

•~hh (1 + M F2 cos2 0] 

cosh kh [fch F2 cos2 0 - tanh kh] 

[14] 

[15] 



When the Froude number is zero, G(k, 0) bee omes 

e-kh 

sinh kh [16] 

The potential for zero Froude number is 

1        b b 

<vi = ^  /r(7')Ä''/i(7/)rf?7= i^   /rW[rv(9) + L^(,)]rf,[lT] 
-* -6 

where h is introduced to make the kernel functions dimensionless in length.   The functions 
Tv{r)) and Lv   (77) have the dimensionless forms 

00 

Ty (^ = Re ~      Te'" W-rHsgn (2_a) g-mU-oi _ e-m (*+a)   |   2e~mh sinh ma cosh wal 

0 sinh mh J 
dm 

[18] 

A    "^    rfe 
1 2m   J .    cos 6  J cos 0 

-n/2 0 

sgn (.-a) e-'l»-«l _ e-*(« + a)+  2e        sinh A-a cosh ^1.. 
sinh /-A J 

If the relations givftn in Appendix A are used, these expressions have the nonintegral forms 

Tv(l)-7: 1      \^    I" g -*- 2^- ^ 2 + 2 nA + a 
[20] 

/" 

1 o 
n  = — oc 

(2 + 2nA-a) ar 

U»?-?/)2 + (2 + 2nA-a)2] [a;2 + (7-y)2 + (z + 2nA-a)2]1/^ 

(3 + 2nA+a) a- 

[(»»-y)    ♦ (2 + 2nA + a)2] [ar2 * (,,-y)2 + (3 + 2nA + a)2]^ 

where (/ is unity.   For intermediate Froude numbers in the subcritical range 

[21] 

* 



G (*, 6) = G0 (A, 0) - 
khF2 cos2 6 

sinh AA cosh AA {khF2 cos2 9 - tanh kK\    * 

Then 
6 • 

/III        Zirn    J 
—b 

[22] 

[23] 

where 

~   .     77/2 00 

KV(T))^-Re        /     cos Odd  4-   
^       -iy, •/     sin 

e        sinh Äa cosh As ArfA 

■^/j -Q     sinh iA cosh M [khF   cos2 Ö - tanh kh] 
[24] 

For the hypothetical case of infinite Froude number 

-kh 

em (*, *) - - 
cosh kh 

and 
6 * 

6^i = £ä / I" (r?) ^^ ^ ^ = i / r (T') [^ (7') + Ly'i(7,)] ^ 
-6  • -6 

[25] 

[26] 

where 7"^ (77) is already defined, and Ly   (77) is the same as L ^   (77) exctpt for an alternating 

si^n in the infinite sum.   Therefore, Ly (rj) is given by Equation [21] if Q is given the value 

<?=(-!)' 

For intermediate Froude numbers in the supercritical range 

[27] 

0 (V) = Gm W, 0) +  ! [>-_ 
sinh A-^ cosh &A (_        A-A F 

MF2 cos2 0 

2 „„=2 cos2 Ö - tanh kh 
[28] 

and the potential is 

6 

where 

(77) rfT/ 

-i 

^K   W-t^^  + ^yC) 

[29] 

[30] 

. 



In this expression 

A       r       de      r   eikw sinh ka cosh kzdk 

.        cos Ö j sinh M cosh/fcA - ^K, <«»> " ^-K W      [31] 
-n/2 0 * 

2 wt   y    cos ö J 

Therefore /.^   (JJ) is twice the sum of the terms of Lv   (J?) for which (' = -1. 
* 1 • 

Since the potentials, associated with the free surface condition, for the two ranges of 

Froude number are similar in form, the following discussion will apply to both functions.   The 

range of integration over negative values of 6 may be changed to positive values if to is re- 
defined as 

Then Ky (T/) becomes 

w+ - x cos rt + (rj-y) sin 0 

w_ = x cos f> - (-q-y) sin 0 

n/2 

Kv (77) = Re i  J     e (Ö) [,4/ (tc+, d) + M («•_, 6)] dd 
0 

where M {w, 0) is the complex integral 

[32] 

[33] 

M (to, 0) = - j- 
f(fr,a,2) eikw dh 

0    ?(*) r2 cos2 e - 
tanh ^A 

/tA ] 
[34] 

In this equation w is written for either w+ or to_.   The functions /(*,a.*), « (Ö), and y (*) are 

/ (A-,a,2) = sinh ka cosh ^2 

« (0) - F2 cos Ö 

g (£) - sinh M cosh kh 
[35] 

The integrand of M (to, Ö) has a simple pole when * = *0, where kQ is defined by the 
equation 

kQh F2 cos2 0 = tanh k0h [36] 

This integral may be evaluated by means of a contour integratio'n in the complex *-plane. 
The method is described in \ppendix B. 



The contour integration yields a value of h'y (?/) which is the sum of two terms, A', 

and h'y .   In the subcritical range of Froude number 

*Va 0?) = '2 (v,v+) + '2 ('/.'O 

where /2 (17,1/) is defined in Equation [15B],  \ppendix B, in which 

Nt.AlZ3.A2Z4 

N2.AXZA + A2Z3 

[37] 

[38] 

The values of the terms used in /V, and N2 are given in Equations [17B] and [188].   In the 

supercritical range of Froude number the integrals defining Ky   (rj) have singularities which 

occur when F cos 0=1.   Therefore it is necessary to find the Cauchy principal value at the 

singularity. 

AV2 OO- Lv2 (t) * Kv   (v) [39] 

le zero It might appear to be more natural to combine Ly   (r,) with Ky   (T,) to give Ky   (7/), th€ 

Froude number value.   However, from the few experimental and theoretical studies which have 

been made with hydrofoils operating at Troude numbers slightly greater than unity, the term* 

Kv'2 (»/), as given here, is a good approximation for the flow near the hydrofoil,8   The approx- 

imation is even better for higher Froude numbers.   This indicates that the other nearfield 

terms which are contained in Ky   (7) are of secondary importance and probably may be ne- 

glected in many computations. 

The other integral terms obtained in the contour integration are of the form /3 (r),w), 

Equations [22B] and [26B] in Appendix B.   As these forms depend upon regions in which w+ 

and w_ are positive, they will be written explicitly for positive and negative values of *, 

using the resiflts gi*en in Table 1 of \ppendix B.   In the subcritical range of Froude number 



x>0,jf-y>0 

r-     n/2 n/2-01 

Kv   (v) = -2F2h\      I     g (0) cos k0w+de +     f g (6) cos k0w_de\ 
^-    n n -I 

[40] 

x <Q, r) - y <Q    • 

n/2 

n/2-0 

KV3iv) = -2F2      f g{d)cosk0w+d0 

where tan dl = | -| , and 

gW- 
k0h cos 0 sinh k0a cosh k02 

sinh k0h cosh k0h [F2  cos2 6 - sech2 k0h] 

[41] 

[42] 

In the supercritical range of Froude number 

a;>0, 77-y>0 

Ky  (r,).-h 
°° *i "| 

/   f {k0) cos k0w+dk0 +    I f (*o) cos ^o^'-^o ^43^ 
o o ^ 

a;<0, 7;-y>0 

00 

Ky^ir,) = -h J   f(k0) cos k0w+dk0 [44] 

where k^is the value of k0 for which 6 - 77/2 - 0J and 

/(*o)= H 
A;0A sinh k0a cosh ä;02 

sinh kQh cosh A0A sin Ö 
[45] 

For negative values of 1; - y, w, and tc_ are interchanged. 

The potential (fry   which contains the kernel Ky   (JJ), is a nearfield term that decays 

rapidly with the distance from the singularity.   The potential <£., , which contains the 
• 3 

10 



kernel Ä"^ (,,), is a wavemaking term which accounts for the waves downstream from the hydro- 

foil.   The waves extending upstream from the hydrofoil are of high frequency and Secay rapidly 

with distance.   Finally, the total potential function for the semi-infinite vortex sheet in shal- 

low water is 

*Vm    £     j     V   ^)^Vl   (V)  +   Ky    (,)   ♦  h'y     (tf)]   dr, [46] 

The x-, y-, and 2-derivatives of <jir are readily'obtained from the derivatives of the 

kernel functions.   The three derivatives of Ky   are obtained*from Equations [20] and [21]. 

If ff |i Äjf Sj, and S2 are introduced for 

/?.2 = 1 - »' + (ri-y)   + (3+ 2nh-ay 

^2 = 2 -«   + iv-y)    + (z + 2nh + ay 
[47] 

Sl2 = (^-y)2 + (2 + 2nA-a)2 

S22.= (v-y)2 + (2 + 2nA + a)2 
[ffi] 

the derivatives of 7^ + Z.K    are 

3(Ty   +Ly) 

dx 
2 + 2 nA + 

^3 

[49] 

HTy + Ly) 
I •      A 

% 

2 (3 + 2nA + o) 

■ IT (9-y) 
T-*      I   8 (2 + 2nA- a)   r        Qs "I 

-^       1 ^      1 + ^" i = -«,       I 0i L i-1 

[50] 

n 



. 
A 

*(TV* L¥x) 
A2 

dz 2 

• 

(»»- y)2 - (3 + 2nA *# 

V^   J ('?-y)2-(a + 2nA-a)2   f     *Qx'\ 

ZA—T;—rd 
y)2 - (3 + 2nA + <^2   f       ^»"1       ^ar(z + 2nA-a) 

S2
4 L       ^aJ S2ff3 

C^ar (z + 2nA + o)2 

[51] 

MIL       J       • ■ r 
The derivatives of the other kernel functions are obtained from the derivatives of A",, (?/) in 

Equation [33].   The «-derivative is the rea! part of 

m/2 

o* 

h —^r  - -«^ (»J.»+) - ^ (ij,»J - -    /   ' e (0) Ol (w+, 9) + ,4/ (to_, 6)] dd [52] 

where e'{d) is the product of cos 0 and its former value.   The y-derivative is      • 

whefe c(Ö) is the product of sin 6 and its former value.   In both cases the new value of 

f{k,a,z) is • '      • 

f{k,a,z) = kh sinh ka cosh kz [54] 

Expressions for the functions J2 {r},w) and J3{r1,w) may be found in Appendix B. The func- 

tions N1 and A,'2 needed for J2(TI,W) are obtained by replacing khy K{l + i) in Equation [54]. 

Then the real and imaginary parts are 

N1 = Kh U^Z^ - A2ZA - A1ZA - A2Z3] 

N2 = Kh [A^^ - A2ZA + A^^ + /12Z3] 

The 3-derivative of A'^C»;) is 

dz I {n, «V) + ' ('/, w_) 

The function e(ö) is unchanged but f(k,a,z) becomes 

f{k,a,z) = kh sinh Aro sinh Aa 

12 

[55]      . 

[56] 

[57] 



Expre|sions for /2 (T},W) and ^(T/, W) may be found in Appendix B.   The functions /Vj and N^ 

required for /2 (r;, «;) are 

AT, = A-A UjZ, -A2Z2 - ^JZJ - /IjZ,] 

/V2 = Kh [^JZJ - ^2Z2 + AlZ2 + AzZJ 
[58] 

3* 
Explicit forms for the three derivatives of K v (T/) for positive and negative values of x are 

readily obtained from the derivatives of the functions given in Equations [40] through [45]. 

POTENTIAL OF A HORIZONTAL LINE DOUBLET OF FINITE SPAN 

The potential of a horizontal line doublet of fkiite span at 3 = o and its image in the 

sea bed at 3 = -o 

<^n      =   Xh Iri lx2 +(7?-y)2 + (Z-a)2]3/2 
+ — -. 1   dr,        [59] 

[x2 + (^-y)2 + (2 + a)2]3/2j 

where ^(r;) is the doublet strength per unit length.   This potential vanishes for large values 

of x and its 2-derivative vanishes at the sea bed.   The integral form for </>D   is 
• / 

*DrReri    [ ^^^      f    co*0d6    ( eikw [e-k\z-a\ + e-k<-z + a^kdk       [60] 
-6 -»7/2 0 

where w is defined in.Eqwation [12]. 

To satisfy the free surface boundary condition of Equation [6], it is necessary to add 

a potential <6D// which'contains an undetermined parameter G {k, 0).   As in the case of the 

senfi-infinite vortex sjieet, G (*, ft) must have the same x and y dependence as cßD   and must 

satisfy Boundary Condition I.   For points near the surface where z is greater than a, the 

potential is 

2A     6 n/2 

*DI + <i>Dli ^Re ITi  J    ^^   f   cos ede j   eikw cosh ka ^e~kz + 0(tf, k) cosh kzMcdk 
-6 Zn/2 

[61] 
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When Boundary Condition II is applied, G{k, 0) has the same form it had for the case of the 

semMnfinite vortex sheet. Equations [15] through [5*8].   It is therefore possible to write down 

the solution at once.    • 

• 

2    r 

■-6 
o 

In this equation the values of KD   (r,) for the two ranges of Froude number 
• 1 

[62] 

are 

2        n/2 ~ • 

KD^r,) = Re —       C    cos Ode   f eik* [»-*!«-«U »-^»t-«) ,   2e~*A cosh ^a c^h **"K .^ 

Sir/a o ^ sinh *A J 

[63] 

r/a 
K[)'iv) = Re—      f   cos Odd   /* «'*»[ e-*l'-«| + Ä-*(i + a)     2|~**^Mhteco8h*«] 

^„'2 o COsh *Ä J 
kdk 

[64] 

These'functions have the nonintegral form 

^2 * iv-V)2 * (2+ 2nA-a)2]3/2       [,2 + (77_y)2 + (3 + 2nA +a)2]3/2 

[65] 

where Q is unity in the subcritical case but has the value (-1)" in the supercritical case. 

The functions KD ^ (9) and KD ^ (r,) are obtained from the real part of the double integral 

■r/a 

*D ('?) = / C»+i '/) + / (w_, ri-Re i'f    6(6) [*(tc+, Ö) + W(W_, 0)] rf0 

where M(w, 6) is the complex function defined in Equation [34].   The functions f{k,a,z), 

e(0), and ^(k) are 

[66] 
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f{k,a,z) = kh cosh ka cosh kz 

6(6)      ^ F2 cos3 e 

ff{k)       = cosh kh sinh kh 

[67] 

The functions l2(r,, w) and ^(T,, W) are defined in Appendix B.   The functions N1 and /V2 

needed for Iji7], w) are 

N^'<hlA3Z3^A4Z4-A3Z4-A4Z3] 

N2 = Kh [A3Z3 - A4Z4 + A3Z4 + /l4Zs] [68] 

In the supercritical range of Froude number it is necessary to determine the Cauchy principal 

value at the singularity which occurs when F cos 6 = 1,   Explicit forms of KD   (f,) are the 

same as those for Ky^r,), Equations [40] through [44], if the functions ff(6) and f{k0) are 
• given the values • 

?(0) = 
(fc0h)2 cos3 0 cosh k0a cosh k0z 

sinh k0h cosh k0h [F2 cos2 Ö - sech2 k0h] 
[69] 

Wo) - 
{k0h)2 cos2 6 cosh k0a cosh /i;0z 

sinh k0h cosh *0A s'in 6 
[70] 

The derivatives of 0D are obtained from the derivatives of the kemel'functions.   Th« 
three derivatives of KD   (,) in Equation [65] are 

SK 
Di      A3 

rlx l£m   L     A3     +    V*    J 

dK, 1) i      3 
= — AJar(n-V) 

dy 2.        "    y; 

-^   L/?,5 ^ A5J 

[71] 

.[72] 

dK, 

r)z 
- h3x V^ O       z +2nh - <*      _3 + 2nA + a~\ 

-fe,   L   R»    +    Ti   J [73] 

where ^ and «2 are as defined in Equation [47].   The derivatives of the other kernel 

functions are obtained from the derivatives of KD (r,) in Equation [66].   The ^-derivative is 

15 



the real part of 

dx = -J(v, ™+) -J(v, «O [74] 

where e (6) is the product of cos 6 and its former value.   The y-derivative is 

[75] 

where c (6>) is the produoi of sin 0 and its former value.   In both cases the new value pf 
f{.k,a,z)   iss 

1 "   < ■ u:- . 
O 

f(k,a,z) = (AA)2 cosh ka cosh kz [76] 

Expressions for the functions J2(r1, w) and J3(n, w) may be found in Appendix B.   The func 

tions Nl and N2 needed for J2(TI, W) are 

The 3-derivative of KD (77) is 

Nl =-2(hh)2[A3Z4 + A4Z3] 

N2 =< 2(Kh)2[A3Z3-AAZA] 

dh\ 
h ~jr m Hi* w

+) + 'iv, wj dB 

[77] 

[78] 

The function e((9) is unchanged but f(k,a,z) becomes 

f(k,a,z) = (£A)2 cosh ka sinh kz 

The functions /Vj and N2 needed for /2(7;, «) are 

[79] 

/V, =-2(A'A)2[.43Z2*+^4Z1] 

^2=    2(lfA)a W,Zl - il4Z2] 
[80] 
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STRENGTH^ OF THE> SINGULARITIES USED TO REPRESENT A HYDROFOIL 

The strength of vorticity along the span of a hydrofoil is a function of the chord and   ' 

leveloped at any section and the free-stream.velocity.   If the vorticity is assumed to have 

an elliptic d.stribution, the vorticity per unit length r(,) in the equations for ^ has the form'" 
« 

lift deve 

•, i     2'-    i/T-?   2 CCLV I—7 
[81] 

In th.s expression L is the total lift and CL is the average lift coefficient of the foil 

The strength per unit length of the horizontal line doublet, used to represent the dis- 

placement effect of the hydrofoil, may be written in terms of a shape parameter A as follows 

"<*)- — *'2 (7) " [82] 

where *(,) is the maximum width of the hydrofoil section.   If the hydrofoil had a circular 

cross^secfon, A would be unity and „(,) would be the usual strength of a line doublet 

Lock      has competed A for a number of different geometric cross sections.   For typical hydro- 
foil sections A is apprcjximately 

.    A = 0.42 (1 + c/«) ^ 

where c/t is the length-width ratio of the section. 
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APPENDIX A 

INTEGRAL RELATIONS USED INJHE POTENTIAL FUNCTIONS 

The integral relations used for the potential functions in the foregoing analysis are 

d.scussed in 'Vu's report and are summarized here.   If the relations are known for one of the 

s.ngular.ties, the others may be obtained by differentiation or integration.   If the basic inte- 

gral relation is given for the source, the doublet relations are obtained by differentiating this 

funct.on w.th respect to one of the coordinates.   The integral relation for the semi-infinite 

vortex sheet is obtained by integrating the expression for the vertical doublet from the posi- 
tion of the hydrofoil downstream to infinity. 

As" the potential of a source i8 proportional to the reciprocal of the distance, the first 
integral relation is 

\/a^Ty2 +,fe2 o 
dk [1A] 

where the zeroth-order Bessel function ./„ (* ^+ y2) may be defined by the integral 

JQ (* \A2 + y^ = ~ /     cos (*« cos <9) cos {ky sin 6) dO 

n/2 

—    I      [cos kw+ + cos ku-J dd 

o 
where 

•o+ = x cos 0 + y sin 0 

w_ = x cos 6 - y sin 0 

[2A] 

[3A] 

Equation [2A] may also be written as the real part of 

0 n-n/2 
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If Equations [1\] and [i\] are combined, the potential fc# the source is 

n/2 
1 

-= fie 

yjx1 + y 2 2 +   3 -n/2 0 

.-*« i/cu 
e       + rf/fc [5\] 

The  potential for the horizontal doublet is obtained by findin« the x-derivative of 

Equation [5A]. 

[x2 + y2 ♦ 2213/2 

rr/2 

cos f.-./« 

-V2 0 

/;e _      C    cos 0^0    \ e~k\z\ e 
kw + kdk [6A] 

The potential of a vertical doublet is obtained by finding the s-derivative of 

Equation [5A]. 

n/% 

[x2 + y2 ,  32]3/2 
He 

sgn 2 

-7r/2 0 

e-*l»l e      + W/t [7A1 

If a; in this expression is replaced by x - f, the potential of a semi-infinite distribution 

of doublets is obtained,by intogratint; both sieves of the equation over ^ from zero to infinity. 

He 

rr/ 2 •■ 
nit    agg f     r      '/ff      C 
= OC 77/ J COS    0      J 

/T2 + y2 + 22 

e-*l» |   giky   s Ind   Lik(x-i)co,v\j;-(m ft^      [8A] 

Near the upper limit where f    is very much laraer than x, the integral over 6 for any ^ 

becomes 

o     n/2  sin (tf^ cos a) cos (*y sin ff) o      /.*»•   sin w cos (kv y/\ - (w/*^m)2) rf« 
-     / ■— ,io =—   I       — 
n    J cos d     . *   J 

HyJ\-(u/kej2 

[9A] 
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In the limit as ^ approaches infinity, this integral becomes 

2                  f sin u         • 
— cos ky    I      du = cos ky 
n                  J u 

0 
[10A] 

Therefore, the two integral relations for the semi-infinite line distribution of doublets are the 
real parts of 

y2^2 
= /?e sgn i |   «-*l*l e,ky dk [11A] 

- Re 

17/2 
sgn z        r       dO 

V     +   2 /~2 2 y   cos ö J 
e~k\z\ e      + dk    [12A] 

-»/a 

. 

When Boundary Condition II is applied in the case of the semi-infinite line distribution 

of doublets, the kernel function Lv  (T?) from Equation [19] is 

^o») 
IT/ 2 oo 

0    h      c      de     r   ikw. 
2fft    J        cos 0   J v  >  >  / cos Ö 

-ir/2 0 
dk [13 A] 

For subcritical Froudn number 

F(k,a,z) = sgn (»-a) f-*lz-«l _ e-A(z+a) + e-kh  sinh ^a cosh ** 
sinh kh 

[14A] 

If the hyperbolic functions are written in their exponential forms 

F{k,n,z) = ^> sgn {2nh + z - a) e~k\2nh +*-•! _     \ ', 

n - 0 "^"^ 

-* (2 nA -z + a) 

n = 1 

-     y^e-kdnh + z + a) +     y^e-kVin h - z- a) 
[15A] 

. 
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If the sign of n is changed in the second and fourth sums, the terms combine to give 

- 
F(M^)=   JV  sgn(2nA + 3-a)e-*|2nA + *-a|_    £ sgn (2nh+ B + a) e^2 " 

n  ~ ~oc 

If the integral relation of Equation [12A] is used 

n  = — oo 

A + z + a| 

[16A] 

n  = ~ oo 

2 nh + 2 - a 

(»j-y)2 + (2nA+3-a)2      / 2 " ,        ^2     ,„   . Tl 

2nA+3 + a • x 

(,-y)    +(2nA + Z + a)2    ^2 + (r7 _y)2 + (2nA + ^+ a)2 

[17A] 

In the supercritical range of Froude number, the last term in the expression for F (k,a,z) is 

-cosh kh instead of sinh kh; see Equations [25] and [26].   Then in the kernel function 

^v'. (v) the terms in the infinite sums alternate in sign. 
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APPENDIX B 

EVALUATION OF THE INTEGRALS BY CONTOUR INTEGRATION 

The wavemaking potentials derived in this report are obtained from the real or imagi- 

nary part of an integral of the type 

L (V) = J (V, ™+) + J {ri, wj - i [I (ri, w+) + I (rj, «,_)] [IB] 

Whereas the kernel functions of the potentials K (r,) and their 2-derivatives are of the type 

/ (T,, tt), the x- and y-derivati ves are of the type J (jf, tc).   In this expression J (i,, «,) and 

l(Vi w) are the real and imaginary parts of the complex integral 

n/l 

Jil, w) - i f(Ti, w) =     I      e{0) M(w, 6) d6 

0 

where M(u;, 0) is tfie principal value of the integral 

[2B] 

Miw, 0) = - f f(k,o,») eikw dk 

0    9{.k) \F
2
 COS

2
 0 

tanh hh 

kh 

[3B] 

In these equations B+ and w_ are as defined in Equation [32], and w is written for either 

or «•_.   The functions e((9) and f(k,a,z) depend upon the type of singularity, and g (k) is 

g(k) = sinh kh cosh kh [4B] 

The integrals are not defined for F = 1. 

The integrals in Equations [2B] and [3B] have singularities in the integrands and 

must be evaluated by means of a contour integration. In the integral defining M(w, 0) there 

are no singularities in the quotient f(k,a,M)/9(k).   There is a simple pole in the integrand, 

however, when k = ^0, where k0 is defined by the equation 

k0h F2 cos2 6 m tanh k0h [5B] 

In the complex ^-plane there are infinitely many singularities on the imaginary axis, and the 

contour of inteEration must be chosen in such a way that this axis is excluded and the inte- 

grand remains finite.   If « is positive, Contour I of Figure 2, which is in the upper part of 
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»>/2 

Contourl w>0 Contour II w<0 

Figure 2 - Contours in the Complex A-Plane for Evaluating the Integrals 

the plane, may be used.   If w is negative, Contour II in the lower part of the plane may be 

used.   The signs of M;+ and w_ for different ranges of x and ß are shown in Table 1 for posi- 

tive values of if - y.   For negative values of r, - y, M>+ and w_ are interchanged.   In this table 

tan 0. = V - y 
[6B] 

TABLE 1 

Signs of »+ and »/•_ for Different Ranges of x and 0 

ar > 0  < 

io+ > 0 

w_ > 0 

Vto_ < 0 

tc    < 0 

jr < 0   ^ w+ < 0 

.U+>0 

0    < 0 < 7r/2 

0     < 0 < n/2 - 0^ 

wfi - 01  < 0 < n/2 

0    < 0 < rr/2 

0    < 0 < n/2 - 01 

n/2 - 0l< 0 < n/2 

Contour I 

Contour I 

Contour II 

Contour II 

Contour II 

Contour I 

Figure 2 shows the pole^within Contour I «t *0 4 ia, where a approaches the limit zero. 

Therefore in the integration about Contour I, there is a residue term which provides wave- 

makine; hut there is no residue or wavemaking associated with Contour II.   For lartje positive 

values of «, 9, is very small and -/+ and -/_ are positive over most of the range of 0.   For 
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small liegative values of x, there is wavemaking ahead of the hydrofoil which decreases as x 

increases and vanishes as Tr approaches minus infinity.   Therefore, Boundary Condition III is 

satisfied.   If the pole were exactly on the axis and shared equally by both contours, there 

would be as much wavemaking ahead of the hydrofoil as downstream from it.   This clearly 

contradicts Boundary Condition III, and Figure 2 gives the correct location of the pole.   This 

analysis is equivalent to the use of a fictitious viscosity to locate the singularity. 

When to is positive, the integration around Contour I gives 

aa a 

-fl    ]dk-- f [    ]/ceied0+    f [    ] e'"'* d\k\ + 2771 Res{kQ) [IB] 

is 9 

In the limit, when A and B become infinite, the integral over the arc AB vanishes.   Along OB 

k\ einl* = A'(l + t) [8B] 

When vc is negative, the integration around Contour II gives 

■[■ \     ]dk.   f [     ] (1-0* [9B] 

If the term for the integration along OB is given the subscript 2 and the term for the residue, 

subscript 8, then M is given by the sum of M2 and Wj, where 

„   ,      _      /if f(,K(l + isgnw),a,2)e-K\w\eiKu'(l + iSf,nw)dh' 
M2 (W» ") = —     I       —  

o    g (A (1 + jsen ui))  \t * cosz 0 i 2 iJ.\ 
L A'^ (1 + ?'sgn to)      J 

= i sgn «;       /  
n     J     g {K (1 + tsgn «)) 

sgn«'), a,2) e~Xlwl elKw dK 

Kh 

M. («-•, 0) = 

[Kh (1 j-isgnu;) F2 cos2 fl - tanh {Kh (1 + tsgnw))] 

i (1+ sgnw) f (k0,a, z) e 
ih0w 

g (*0) [F2 cos2 Ö - sech2 kQft 

[10B1 

[11B1 
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To obtain the real and imaginary parts of M2(v>, 0), let 

• iVj + t sgn M) A/2 =/(A" (l^isgnw), o,z) [12B] 

(/(K (1 + isgnw)) 
Ul + isgn w D2 =  —    [Kh (l + isgnw) F* cos* 0 - tanh {Kh (1 + tsgn«;))] 

Kh 

The real and imaginary parts of A", (»7) are 

[13B] 

2A     ^ 
■'aCft «)--— J       e{0)de j e-K^W^sgnwsm Kw + C2cos Kw\dK [14B] 

0 0 . 

rr/j 
• 2h      r r 

I2(V, "') = -—   J     •WM j   e-KW \Cl sgn to cos Kw - C2 sin Kw\ dK        [158] 

where 

/V, />>, + /V2 02 ^2 Oj - /Vj z?: 

1 I '   ^ 2 =  
0} + D? n2 ,   „2 

[168] 
1 T "a D/ + 02 

The values of A/, and /V2 must be determined for the particular singularity under consideration. 

These are functions of the following quantities: 

4 j = sinh Ka cos Ka 

A3 - cosh Ka cos Ka 

^j = sinh Kz cos Kz 

23 = cosh Kz cos A'2 

/12 = cosh Ka sin Aa 

/14 = sinh Ka sin Aa } 
Z2 = cosh A"« sin Kz   1 

Z4 = sinh Kz sin Az   J 

[178] 

[188] 

Then the expressions for !). and D. are 
• • a 

"I'^TK   
[Kh F     C0S2 ö ^l -//2) - «3 +  11 

02 = 2^ lA^2cos2"("i^/2)-W4] 
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where 

«j = sinh 2Kh cos 2Kh 

H3 = cosh 2Kh cos 2Kh 

9 H2= cosh 2Kh sin 2Kh 

HA = sinh 2/CA sin 2^ 
[20B] 

As K becomes small A/, and A/2 in Equation [16B] are of magnitude (Kh)n, where n is equal 

to or greater than unity for all the singularities considered   In the denominator O, and 0 

have magnitudes (Ä-Ä)3 and Kh [F2 cos2 9 - 1], respectively.   Therefore, C, and C2 are d^ 

fined for allvalues of K and 6 in the^ubcritical range of Froude number.   In the supercritical 

range of Froude number, F cos 3 may also be greater than unity and becomes equal to unity    < 
when 0 = e0, defined by 

cos e0 = l/F [21B] 

When the value of the integrand is investigated as 0 approaches eo from both sides of the 

singularity, the Cauchy principal value is found to exist and the integrals in Equations [14BJ 
and [15B] are defined. 

The real and imaginary parts of the functions defining *,(,,) for the subcritical range 
of Froude number are • 

n/2 

sinh k 

e id) f (*o'a'2) f1 + sgn w) sin kQw knde 

0h cosh k0h [F2 cos2 0 - sech2 knh] [228] 

n/2 

la (v. ") 

e id) f(k0,a,2) (l + sgntc) cos kQw kQde 

0      sinh *0A cosh k0h [F2 cos2 0 - sech2 k0h] 
[23B] 

As long as the Froude number is less than unity, the smallest value k0 can assume is always 

greater than zero and these expressions are defined for all values of *„ and e.11 

In the supercritical range of Froude number, the expressions for •.(,,,«) and /,(„, w) 

are the same except for the lower limit of the integral which is 90 instead of z^ro. As k0 is 

zero when 0 = 99, these expressions appear to have singularities for these values of the pa- 

rameters. The difficulty is avoided, however, if the integration is evaluated over ka instead 
of 0.   If Equation [SB] is differentiated 

M hdkr 

F   cos2 6-sech2 k0h       2F2cos0sind 
[24B] 
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then 

j'(    «,) = _ ^L    7 e(6>)^o»a'2)(1 + 3gn«') 3mkQw kQdkQ 

2F2   { sinh A0Ä cosh A0A cos Ö sin 0 
[25B] 

f3 (r,, w) = - h2       7 c(ö)/(*o'a'3)(1 + sgnw) cos/t.«, >fcndSfc, 

/ 
o1" "•oUrto 

2F2   J sinh k0hcosh k0hcos 6 sin 6 
[26B] 

The integrands of these integrals have no singularities and con 
infinity and 6 approaches 7r/2. 

The derivatives of £ (,) with respect to x, y, and ■ are 

.   dL 

where e (0) in Fnuation [2B] is roplaced by the product of cos 0 

verge to zero as k0 approaches 

[278], 

and its former value. 

dL 
h d^ =-,(T>'wJ + ,(V'™-)+ilJ(rhu-+)-J(,,,„■_ )1 [28B] 

where e (0) is replaced hy the product of sin 6 and its former value.   In both cases ,(* a ,) 
becomes the product of ft and its former value. ' v  ,  ,  ; 

dL 
h ^ "'(''W+)+ '/fo'«O-^'O».«*)*/(*»_)] [29B] 

where .(.) |a unchanged but f^a^ replaced by ^ 2.derivative of ^ ^^ ^^ 
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